constrained by knowledge: 
the case of infinite ping-pong balls

This report is part of a broader study that investigates university students’ resolutions to paradoxes regarding infinity. It examines two mathematics educators’ conceptions of infinity by means of their engagement with a well-known paradox: the ping-pong ball conundrum. Their efforts to resolve the paradox, as well as a variant of it, invoked instances of cognitive conflict. In one instance, it was the naïve conception of infinity as inexhaustible that conflicted with the formal resolution. However, in another case, expert knowledge resulted in confusion.

Properties of infinity have puzzled and intrigued minds for centuries, dating as far back as 450 BC when Zeno of Elea invented subtle and insightful arguments that highlighted the inherent anomalies of the infinite, such as in the infamous race between Achilles and a tortoise. Today, there are several paradoxes concerning the infinite, though most stir up the same tensions first noted by Zeno − namely the conflict between intuition and formal mathematics, and the interplay between potential infinity, that which is endless, and actual infinity, a completed entity that encompasses what was potential. 

The question of what happens to an infinite iteration once the process is complete continues to challenge both naïve conceptions of infinity as well as expert ones. This paper is part of a broader study regarding conceptions of infinity that emerge in participants’ resolution of paradoxes. This report examines two experts’ responses to the ping-pong ball conundrum as well as to a variation of it.

1. Infinity and Ping-Pong Balls

One aspect of actual infinity that has been considered paradoxical by mathematicians and mathematics students alike concerns the comparison of two infinite sets of seemingly different cardinality, or ‘size’. An anomaly of actual infinity is that two sets can be equal in size, while one is a subset of the other. As illustration, consider for example, the set of natural numbers N = {1, 2, 3, …}, and the set of even numbers E = {2, 4, 6, …}. On one hand, N appears to be the larger set, since the even numbers form a proper subset of the natural numbers. On the other hand, every natural number has exactly one double, and so the elements of the two sets can be paired up in a one-to-one correspondence, suggesting the sets are equinumerous. This troublesome inconsistency was resolved by Georg Cantor through his work in set theory. Cantor defined two cardinalities to be equivalent if and only if their corresponding sets could be put into a one-to-one correspondence. This definition contributed to the first consistent mathematical description of actual infinity, and it provides the foundation for the normative resolution to various paradoxes regarding infinity, including the Ping-Pong Ball Conundrum.

1.1 The Ping-Pong Conundrum:

 Imagine you have an infinite set of ping-pong balls numbered 1, 2, 3, …, and a very large barrel; you are about to embark on an experiment. The experiment will last for exactly 1 minute, no more, no less. Your task is to place the first 10 balls into the barrel and then remove number 1 in 30 seconds. In half of the remaining time, you place balls 11 to 20 into the barrel, and remove ball number 2. Next, in half of the remaining time (and working more and more quickly), place balls 21 to 30 into the barrel, and remove ball number 3. Continue this task ad infinitum. After 60 seconds, at the end of the experiment, how many ping-pong balls remain in the barrel? 

In this thought experiment there are three infinite sets to consider: the in-going ping-pong balls, the out-going ping-pong balls, and the intervals of time. The necessity to coordinate three infinite sets, along with the counterintuitive (and unavoidable) boundedness of one of them, creates a level of complexity in this paradox that can be difficult for many students to overcome. The infinite sequence of time intervals (½, ¼, ⅛, …) is bound between 0 seconds and 1 minute; the sum of the corresponding series is 1 (½ + ¼ + ⅛ + … = 1). The conflict between an ‘unlimited’ number of time intervals and a ‘limited’ time of 1 minute (or 60 seconds) underscores the interplay between potential and actual infinity. In order to make sense of the normative resolution to this paradox, an understanding of actual infinity is necessary. Despite the fact that at every time interval there are more in-going than out-going ping-pong balls, at the end of the experiment the barrel will be empty. An important aspect in the resolution of this paradox is the one-to-one correspondence between each of the infinite sets and the set of natural numbers.

The sets of in-going and out-going ping-pong balls, being numbered as they are, both correspond to the set of natural numbers. This correspondence ensures that at the end of the experiment, as many balls were removed from the barrel as went in. The set of out-going ping-pong balls and the set of time intervals, which can be represented as the sets B ={1, 2, 3, … }, and T = {½, ¼, ⅛, …}, respectively, can also be put into a one-to-one correspondence by pairing any x ( B with (½)x ( T. Thus, since there is the same amount of balls and time intervals, when the 60 seconds runs out, so do the balls. 

An essential feature of this thought experiment is the ordering of the out-going ping-pong balls. It is not enough that the amount of out-going balls corresponds to the amount of time intervals. In order for the barrel to be empty at the end of the experiment the ping-pong balls must be removed consecutively, beginning from ball #1. Consequently, there will be a specific time for which each of the in-going balls is removed. The issue of order and its effect on the paradox resolution is illustrated by a variation of the ping-pong ball conundrum that will be discussed below.

2. Background

A prominent trend in mathematics education research that focused on learners’ conceptions of infinity has been to examine students’ understanding through a lens of Cantorian set theory (e.g. Dreyfus and Tsamir 2004; Fischbein, Tirosh, and Hess 1979). In several studies students were presented with numeric sets, such as N = {1, 2, 3, …} and E = {2, 4, 6, …}, and were asked to draw cardinality (or ‘size’) comparisons. Their conceptions have then been analysed based on the techniques or principles they apply to the task. One such study was conducted by Tsamir and Tirosh (1999) who observed that the presentation of infinite sets had an impact on high school students’ ideas as they compared the cardinality of those sets. For example, if the sets N and E were presented side-by-side, students tended to respond that N was the larger set since E was contained within it (the ‘part-whole’ method of comparison). Whereas if N and E were presented one above the other the tendency was to draw a one-to-one correspondence between each number and it’s double and thus conclude that the sets were equinumerous. The irrelevant aspect of where on the page the sets are positioned illustrates what Fischbein et al. described as the “highly labile” nature of the intuition of infinity (1979, 32). 

Despite the popular focus towards numeric representations of sets, investigating conceptions through this lens has limitations associated with the abstract nature of set theory. A more diverse approach to investigating learners’ conceptions of actual infinity can complement the insight gained through a set theoretic lens. To the best of my knowledge, only a few studies have interpreted learner’s conceptions of infinity through alternative lenses. One such study, by Fischbein, Tirosh, and Melamed (1981), used geometric representations of infinity to analyse the intuitions of middle school students. One of the tasks in this research included comparing the number of natural numbers with the number of points on a line. The majority of students answered incorrectly, the typical response being that “there is an infinity of points on the line, and there is an infinity of natural numbers” (Fischbein et al. 1981, 506), and so the two sets must be equivalent. Fischbein et al. (1981) concluded that infinity was conceived of mainly as potential, that is, as an inexhaustible process. Fischbein suggested the association of infinity with inexhaustible is “the essential reason for which, intuitively, there is only one kind, one level of infinity. An infinity which is equivalent with inexhaustible cannot be surpassed by a richer infinity” (2001, 324). 

My paper extends on prior research by investigating conceptions of infinity as they arose, and were challenged by, participants’ engagement with two paradoxes: the Ping-Pong Ball Conundrum, and a variation of it.

3. Theoretical Perspectives

Movshovitz-Hadar and Hadass (1990) suggested paradoxes provide educators with an important instructional tool that can help bridge the gap between mathematics and education by provoking discussion and controversy, and by offering an opportunity for students to develop their mathematical thinking. They observed that the “impulse to resolve the paradox is a powerful motivator for change of knowledge frameworks. For instance, a student who possesses a procedural understanding may experience a transition to the stage of relational understanding” (1990, 285). Movshovitz-Hadar and Hadass (1990) also suggested that engaging learners in resolving paradoxes could trigger a state of cognitive conflict, which for some learners, resulted in the construction of new cognitive structures. In my study, I use paradoxes regarding infinity as a research tool to elicit cognitive conflict in participants’ naïve and informed conceptions.

 Piaget (1985) described the development of cognitive structures as a cycle that progresses from one stage of equilibrium to another. He referred to equilibrium as the coherence or balance maintained (and sought) by an individual as he or she attempts to construct knowledge. When a learner is confronted with information that is inconsistent with his or her prior knowledge, he or she is said to be in a state of disequilibrium, or cognitive conflict. The transition from cognitive conflict to a new equilibrium compels a learner to refine his or her understanding in order to integrate the new knowledge. Implementing a cognitive conflict framework with regard to learners’ conceptions of infinity has been described in mathematics education literature (e.g. Tall 1977; Tsamir and Tirosh 1999). 

In this paper, I examine two cases where cognitive conflict was invoked when participants attempted to resolve paradoxes concerning actual infinity. Both participants in my study experienced states of conflict while engaging with the paradoxes. In the first case, the normative solution to the ping-pong ball conundrum (PP) conflicted with one participant’s naïve conception of infinity as inexhaustible. In the second case, it was familiarity with properties of actual infinity that impeded this participant’s resolution of a variant to the ping-pong ball paradox (PV).

4. Setting and Methodology 

The participants of this study were two mathematics teachers, Kenny and Eric. Kenny is a high school teacher who holds a Master’s in applied mathematics. Despite his extensive background in mathematics, Kenny had not formally studied set theory or Cantor’s theory of transfinite numbers. Eric holds a Master’s in mathematics education, and teaches a ‘Foundations of Mathematics’ course for practicing teachers that explores some of the foundations of mathematics and mathematical thought. The class focuses on ‘big ideas’ and ‘great theorems’, including Cantor’s theory of transfinite numbers which is presented along with the ‘great theorem’ establishing that the rational numbers have the same cardinality as the natural numbers.

Data was collected during a one-hour interview with each of the participants. The interviews began by presenting the participants with the ping-pong ball conundrum (PP), which was presented in section 1.1. Their solutions were discussed, and the normative resolution was offered. Immediately following this, a variation to the ping-pong experiment (PV) was posed. In the variation PV, participants were asked to consider the outcome when, rather than removing the balls in order, at the first interval ball 1 is removed; at the second interval, ball 11; at the third interval, ball 21; and so on. In this situation, the balls numbered 2 – 10, 12 – 20, 22 – 30, and so on, are never removed from the barrel, thus the end of the experiment, the barrel is infinitely full. As before, Kenny and Eric’s resolutions were discussed and the normative solution was given. Kenny and Eric were encouraged to reflect on their responses once they had completed both tasks.

5. Results and Analysis

Kenny and Eric approached the two tasks in different ways: while Kenny drew on his intuitions to resolve the paradoxes, Eric relied on his understanding of the formal definition regarding equivalent cardinalities. 

5.1 Ping-Pong (PP): A conflict with intuition


Common intuitive responses to the ping-pong paradox (PP) draw on the idea of infinity as inexhaustible, that is, on the idea of potential infinity. In a related study (see Mamolo and Zazkis 2007), we found that students were likely to attend to the different rates of in-going and out-going balls in order to draw conclusions regarding the final state of the barrel. Likewise, Kenny reasoned that since the rate of in-going balls was greater than the rate of out-going balls, the barrel must contain infinitely many balls at the end of the experiment. Kenny connected the concept of infinity with on-going, and had difficulty accepting the argument that the one-to-one correspondences between sets of in-going balls, out-going balls, and time intervals, guaranteed the barrel would end up empty. After some discussion, Kenny reflected that “if you don’t think about one-to-one correspondences, the instinct is there are 9 left every time you take one out, so it’s 9 infinity.” The resolution to the ping-pong variant came much more easily to Kenny, who readily acknowledged there would be balls left in the barrel – although his instinct was that there would be a “bigger” infinity of balls remaining in, than removed from, the barrel.

5.2 Ping-Pong Variation (PV): A conflict with formal understanding

Eric, who was familiar with Cantor’s theory, resolved PP immediately. However, his knowledge of one-to-one correspondences turned out to be an obstacle to his resolution of PV. Unlike Kenny who attended to the rates of in going and out going balls, Eric recognized the one-to-one correspondences in both PP and PV. He concluded that the variant and the “ordered case” should be the same, arguing that “after you go [remove] 1, 11, 21, 31, …  91, etc, you go back to 2.” Eric’s knowledge of infinite cardinals contributed to his “strong leaning to Cantor’s theorem,” and although he insisted “at some point we’ll get back to 2,” he could not justify the claim. During the interview, Eric noticed the conflict between his prior knowledge and the solution to PV, stating “if ball number 2 is there, so is 2 to 10, etc… so, infinite balls there? I have trouble with that.” Eric went on to observe that while “on one hand ∞ - ∞ = 0, on the other it’s ∞” – a property of transfinite arithmetic that was absent in his prior knowledge. After more discussion, Eric recognized the differences between PP and PV, conceding that he was now “convinced” of the solution. 

6. Concluding Remarks

It has been well established that when formal notions are counterintuitive, primary, inaccurate intuitions tend to persist (see among others Fischbein et al. 1979). When a learner recognizes the discrepancy between his or her prior understanding and the new knowledge, he or she is said to be in a state of cognitive conflict. In the case of Kenny, cognitive conflict was invoked when he recognized the inconsistencies between his intuition of infinity and the resolution of PP. Conversely, with Eric, a state of cognitive conflict was invoked when new knowledge was consistent with a naïve interpretation but inconsistent with his expert approach. Eric’s understanding of PV was constrained by his knowledge of Cantor’s theory, but might have been influenced by the sequence of the tasks. Since the ping-pong variation (PV) was presented immediately after the original paradox (PP), Eric’s mindset toward PV might have been swayed by his engagement in the previous task. 

This paper reports preliminary findings that support the claim Movshovitz-Hadar and Hadass (1990) that paradoxes are effective tools for eliciting cognitive conflict and provoking the development of new cognitive structures. Future research will investigate this possibility on a broader scale.
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